FORECASTING THE DEVELOPMENT OF RECURRENCES IN PATIENTS WITH PRIMARY AND POSTOPERATIVE VENTRICULAR HERNIAS WITH APPLICATION OF MULTIPARAMETER NEURO NETWORK CLUSTERIZATION
ПРОГНОЗИРОВАНИЕ РЕЦИДИВА У БОЛЬНЫХ С ПЕРВИЧНОЙ И ПОСЛЕОПЕРАЦИОННОЙ ВЕНТРАЛЬНОЙ ГРЫЖЕЙ С ИСПОЛЬЗОВАНИЕМ МНОГОПАРАМЕТРИЧЕСКОЙ НЕЙРОСЕТЕВОЙ КЛАСТЕРИЗАЦИИ;
ПРОГНОЗУВАННЯ РОЗВИТКУ РЕЦИДИВІВ У ХВОРИХ ІЗ ПЕРВИННИМИ ТА ПІСЛЯОПЕРАЦІЙНИМИ ВЕНТРАЛЬНИМИ ГРИЖАМИ ІЗ ЗАСТОСУВАННЯМ БАГАТОПАРАМЕТРИЧНОЇ НЕЙРОМЕРЕЖЕВОЇ КЛАСТЕРИЗАЦІЇ
dc.creator | Piatnochka, V. I. | |
dc.creator | Dzyubanovskyi, I. Ya. | |
dc.creator | Selskyi, P. R. | |
dc.date | 2019-02-19 | |
dc.date.accessioned | 2019-08-26T18:17:58Z | |
dc.date.available | 2019-08-26T18:17:58Z | |
dc.identifier | https://ojs.tdmu.edu.ua/index.php/here/article/view/9843 | |
dc.identifier | 10.11603/mie.1996-1960.2018.4.9843 | |
dc.identifier.uri | https://repository.tdmu.edu.ua/handle/123456789/11359 | |
dc.description | Background. Surgical treatment of patients with primary and postoperative ventral hernia remains one of the important problems in the surgery of abdominal cavity. About 60 % of patients are of working age. The results of surgical treatment of postoperative ventral hernia indicate a significant percentage of recurrence, which is 4.3-46 %. This problem is relevant especially in cases where the inappropriate method of alloplasty and mesh implant is selected and in the early postoperative period a number of general complications arise and lead to recurrence. The latter require a detailed analysis of the reasons for their occurrence and the development of individualized prescriptions before choosing the method of surgery. Modern information technology greatly facilitates solving prediction problems. Currently, neural networks are widely used for early diagnosis. Materials and methods. Between 2001 and 2017, an in-depth comprehensive clinical-instrumental and laboratory examination of 1419 patients with primary ventral hernia (PVH) and postoperative ventral hernia (POVH) was carried out, with further evaluation of the nature of complications in the early and late postoperative period. For more in-depth analysis and clustering of the surveyed under study, a neural network approach was used with the help of NeuroXL Classifier add-in for Microsoft Excel. Results. In order to determine the value of the combination of changes in certain parameters for the prediction of the development of relapses of ventral hernias, a neural network clusterization of the results of the patient's examination based on the parameters of relapse, age, gender, blood group, concomitant pathology, etc. was performed. For the algorithm of neural network clustering the parameters proposed by the same program were selected. The largest number of patients with the first relapse was referred to the cluster 1, which was 8.4 %, where the highest number of patients with heart failure, chronic obstructive pulmonary disease and diabetes was noted. Most patients with relapses were found in the cluster 4, which was 27.6 %. The most commonly encountered patients with undifferentiated connective tissue dysplasia and the second blood group were also included in this cluster. At the same time, the average age in this group was the lowest and amounted 49.4 years. Analyzing the results of clustering of patients with relapses of ventral hernias by types of surgical interventions, it was determined that this cluster had the highest incidence of patients with primary ventral hernias, who underwent an onlay type surgery using lightweight mesh. The highest number of relapses (R1-R4) fell on the cluster 2 (19.1 %), which showed the highest number of women compared to the clusters 1 and 3-5. Conclusions. Analysis of cluster portraits revealed that the risk group for relapse included of women with the first-degree obesity, as well as patients with heart failure, chronic obstructive pulmonary disease and diabetes. The presence of the second blood group, the relatively younger age (< 49.4 years), and the diagnosed syndrome of undifferentiated connective tissue dysplasia gives a reason to predict a higher risk of relapse after ventral hernia recurrences in operated patients. | en-US |
dc.description | Проанализированы результаты обследования и хирургического лечения 1419 пациентов с первичной и послеоперационной вентральной грыжей с применением многомерной нейросетевой кластеризации для выделения групп высокого риска возникновения рецидива, что позволяет провести адекватную дооперационную подготовку, направленную на коррекцию сопутствующей патологии, определить оптимальный способ хирургического вмешательства и выбора сетчатого импланта с индивидуализированным подходом к каждому отдельно взятому пациенту. | ru-RU |
dc.description | Проаналізовано результати обстеження та хірургічного лікування 1419 пацієнтів із первинною та післяопераційною вентральною грижею, із застосуванням багатопараметричної нейромережевої кластеризації для виділення групи високого ризику виникнення рецидиву, що дозволяє провести адекватну доопераційну підготовку, направлену на корекцію супутньої патології, визначити оптимальний спосіб хірургічного втручання та вибору сітчастого імпланту з індивідуалізованим підходом до кожного окремо взятого пацієнта. | uk-UA |
dc.format | application/pdf | |
dc.language | ukr | |
dc.publisher | I. Horbachevsky Ternopil National Medical University | en-US |
dc.relation | https://ojs.tdmu.edu.ua/index.php/here/article/view/9843/9546 | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0 | uk-UA |
dc.source | Medical Informatics and Engineering; No 4 (2018); 41-45 | en-US |
dc.source | Медицинская информатика и инженерия; № 4 (2018); 41-45 | ru-RU |
dc.source | Медична інформатика та інженерія; № 4 (2018); 41-45 | uk-UA |
dc.source | 1997-7468 | |
dc.source | 1996-1960 | |
dc.source | 10.11603/mie.1996-1960.2018.4 | |
dc.subject | primary hernia | en-US |
dc.subject | postoperative ventral hernia | en-US |
dc.subject | relapse | en-US |
dc.subject | neural network clasterization | en-US |
dc.subject | forecasting | en-US |
dc.subject | первичная грыжа | ru-RU |
dc.subject | послеоперационная вентральная грыжа | ru-RU |
dc.subject | рецидив | ru-RU |
dc.subject | нейросетевая кластеризация | ru-RU |
dc.subject | прогнозирование | ru-RU |
dc.subject | первинна грижа | uk-UA |
dc.subject | післяопераційна вентральна грижа | uk-UA |
dc.subject | рецидив | uk-UA |
dc.subject | нейромережева кластеризації | uk-UA |
dc.subject | прогнозування | uk-UA |
dc.title | FORECASTING THE DEVELOPMENT OF RECURRENCES IN PATIENTS WITH PRIMARY AND POSTOPERATIVE VENTRICULAR HERNIAS WITH APPLICATION OF MULTIPARAMETER NEURO NETWORK CLUSTERIZATION | en-US |
dc.title | ПРОГНОЗИРОВАНИЕ РЕЦИДИВА У БОЛЬНЫХ С ПЕРВИЧНОЙ И ПОСЛЕОПЕРАЦИОННОЙ ВЕНТРАЛЬНОЙ ГРЫЖЕЙ С ИСПОЛЬЗОВАНИЕМ МНОГОПАРАМЕТРИЧЕСКОЙ НЕЙРОСЕТЕВОЙ КЛАСТЕРИЗАЦИИ | ru-RU |
dc.title | ПРОГНОЗУВАННЯ РОЗВИТКУ РЕЦИДИВІВ У ХВОРИХ ІЗ ПЕРВИННИМИ ТА ПІСЛЯОПЕРАЦІЙНИМИ ВЕНТРАЛЬНИМИ ГРИЖАМИ ІЗ ЗАСТОСУВАННЯМ БАГАТОПАРАМЕТРИЧНОЇ НЕЙРОМЕРЕЖЕВОЇ КЛАСТЕРИЗАЦІЇ | uk-UA |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |