Show simple item record

УМЕНЬШЕНИЕ РАЗМЕРНОСТИ ПРИ ПРОГНОЗИРОВАНИИ УСПЕВАЕМОСТИ В ЗАДАЧАХ МЕДИЦИНСКОГО ОБРАЗОВАНИЯ: ПОДХОД НА ОСНОВЕ МЕТОДА PCA;
ЗМЕНШЕННЯ РОЗМІРНОСТІ ПРИ ПРОГНОЗУВАННІ УСПІШНОСТІ В ЗАВДАННЯХ МЕДИЧНОЇ ОСВІТИ: ПІДХІД НА ОСНОВІ МЕТОДУ PCA

dc.creatorMartseniuk, V. P.
dc.creatorDronyak, Yu. V.
dc.creatorTsikorska, I. V.
dc.date2019-02-19
dc.date.accessioned2019-08-26T18:17:57Z
dc.date.available2019-08-26T18:17:57Z
dc.identifierhttps://ojs.tdmu.edu.ua/index.php/here/article/view/9840
dc.identifier10.11603/mie.1996-1960.2018.4.9840
dc.identifier.urihttps://repository.tdmu.edu.ua//handle/123456789/11356
dc.descriptionBackground. System research in medical science and education is often based on data with a large number of attributes. Therefore, the problem of reducing the dimension of the data is actual, while keeping data with as much variation as possible. At the same time, such problems can be considered as problems of machine learning, which can be solved using artificial intelligence algorithms (for example, artificial neural networks.) The interpretation of the results of the application of classification algorithms without prior reduction of the dimension of such tasks is a difficulty for the decision maker. The results may be simplified by the reduction of the dimension of the task. Materials and methods. The method proposed and applied in this paper is described in terms of machine learning. Namely, the mathematical description of the tasks of machine learning in research in the field of medical education is based on the following data. We have a set consisting of tuples. Depending on the problem under consideration, certain sets of these tuples will be used for training, testing and prediction. An arbitrary tuple consists of input data (we will call them according to the established terminology of machine learning as attributes) and output data, which are attributes of the class. As a result of reducing the dimension, we obtain a certain numerical matrix, where these data can be used in variety of problems of machine learning. In order to study the possibilities of reducing the dimension of the medical education assessment tasks, the results of the medical students at TSMU were considered (the volume of the general population was 248). Results. In the work an approach which is based on application of the method PCA with the purpose of determining principle reasons (current and final progresses), which influence on the results of license integrated exam, is offered. Using the visualization, approach allows us to represent data on a plane in the coordinates of the first two main components. This allows us to identify the main changes in the attributes that cause the data to belong to certain groups. So, using such a visualization to the student data, we can get graphic representations of the «main» performance indicators (current and final) that predict the passing the licensed integrated exam «Step 1». Conclusions. Reduction of dimension is a very important element in the analysis of statistical data in medical education. Due to reducing the dimensions, we achieve not only that we simply need to analyze less data. The most important is that after the reduction, they often show us more information than before reducing the dimension. Many dependencies in medical education become more readable. It often happens that the amount of data we have is beyond the scope of our perception and then it is very easy to get lost in their analysis.en-US
dc.descriptionВ работе предложен подход на основе использования метода PCA с целью выявления главных причин (поточной либо итоговой успеваемости), влияющих на результаты лицензированного интегрированного экзамена.ru-RU
dc.descriptionУ роботі запропоновано підхід на основі використання методу PCA з метою виявлення головних чинників (поточної або підсумкової успішностей), що впливають на результати ліцензійного інтегрованого іспиту.uk-UA
dc.formatapplication/pdf
dc.languageukr
dc.publisherI. Horbachevsky Ternopil National Medical Universityen-US
dc.relationhttps://ojs.tdmu.edu.ua/index.php/here/article/view/9840/9528
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0uk-UA
dc.sourceMedical Informatics and Engineering; No 4 (2018); 16-24en-US
dc.sourceМедицинская информатика и инженерия; № 4 (2018); 16-24ru-RU
dc.sourceМедична інформатика та інженерія; № 4 (2018); 16-24uk-UA
dc.source1997-7468
dc.source1996-1960
dc.source10.11603/mie.1996-1960.2018.4
dc.titleREDUCTION OF DIMENSION FOR PREDICTION OF PROGRESS IN PROBLEMS OF MEDICAL EDUCATION: AN APPROACH BASEDen-US
dc.titleУМЕНЬШЕНИЕ РАЗМЕРНОСТИ ПРИ ПРОГНОЗИРОВАНИИ УСПЕВАЕМОСТИ В ЗАДАЧАХ МЕДИЦИНСКОГО ОБРАЗОВАНИЯ: ПОДХОД НА ОСНОВЕ МЕТОДА PCAru-RU
dc.titleЗМЕНШЕННЯ РОЗМІРНОСТІ ПРИ ПРОГНОЗУВАННІ УСПІШНОСТІ В ЗАВДАННЯХ МЕДИЧНОЇ ОСВІТИ: ПІДХІД НА ОСНОВІ МЕТОДУ PCAuk-UA
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record